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ABSTRACT

This paper presents a methodology used in support of a contract study for
NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for
uprating the National Sgace Transportation System (NSTS). The objective was to
compare alternative corfigurations for this booster approach, optimizing each
candidate concept on different bases, in order to develop data for a trade table
on which a final decisicn was based. The methodology is capable of processing a
large number of independent and dependent variables, adjusting the overall
subsystems characteristics to arrive at a best compromise integrated design to
meet various specified optimization criteria subject to selected constraints.
For each system considered, a detailed weight statement was generated along with
preliminary cost and reliability estimates.

INTRODUCTION

Hybrid propulsion systems have been recommended for Space Shuttle applica-
tion for over eight years. In 1982, the NASA/MSFC "Shuttle Derived Vehicle
Technology Requirements Study" rated hybrid propulsion technology as the highest
priority of 23 technologies when ranked by economic leverage. In 1987, the
NASA/LRC, "Analysis of Quasi Hybrid Booster Concepts" study recommended that fu-
ture efforts for advanced earth-to-orbit booster systems focus on conventional
hybrid rockets. As a result of increased interest in improving launch vehicle
safety and reliability, the Aerospace Safety Advisory Panel Annual Report, March
1990, recognized the capability of hybrid rocket technology to improve Space
shuttle 1launch safety and reliability, and to reduce hazardous environmental
conditions that result from the combustion of current solid rocket propellants.
Hybrid rocket propulsion has been used in operational hybrid missiles (Sand-
piper, Firebolt, HAST}, and tested from idle to 75,000 1lbf thrust in ground
tests, but design algorithms and modeling methods need to be developed and
verified with test data for space booster applications.

This paper presents the results of a conceptual design study to determine

the best hybrid booster configuration for STS application (Ref 1). The study
groundruled that the booster should deliver the same thrust versus time profile
as the ASRM (Advanced Solid Rocket Motor). Previous studies have considered the

classic hybrid rocket with a solid fuel and liquid or gaseous oxygen injected at
the forward end of the fuel grain. This study not only examined the classic hy-
brid concept, but also a newer, gas generator concept which uses a solid propel-
lant gas generator to provide a fuel-rich gas that is burned in a combustion
chamber. This concept is similar to the ducted rocket engine except that liquid
oxygen is used instead of air from the atmosphere.

The study developed four configurations of the gas generator concept and
four configurations of the classic hybrid rocket concept. These configurations
were comprised of pump or pressure fed engines with liquid oxygen or hydrogen
peroxide (H202) oxidizer. A design program was used to size the boosters, com-
pute payload capabilizy, and estimate 1life cycle cost and reliability.

*This work was performed under prime contract number NAS8-37776 to Atlantic
Research Corporation, Virginia Propulsion Division for NASA/MSFC.
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The best configuration of these eight was selected for design optimization.
Different optimized designs were derived for lowest life cycle cost, greatest
payload capability, lowest cost/payload weight ratio, lowest empty weight, and
lowest gross lift-off weight. A comparison of the independent and dependent
variables for each design provides design insight, and provides options for
booster design.

DESIGN PROGRAM

The hybrid propulsion design program was derived from the HAVCD
(Hypervelocity Aerospace vehicle Conceptual Design) program used in the BP/VIS
{Booster Propulsion/Vehicle Impact study, Ref. 2). The original code combined
aerodynamic, propulsion, weight, tank sizing and pressurization, trajectory per-
formance, and flyback system design subprograms to design single stage and two
stage to orbit, rocket powered launch vehicles. The basic methodology of the
program was retained, but the subprograms were modified to analyze hybrid rocket
boosters. Figure 1 illustrates the different analysis programs used in the new
code. The weight subprogram serves as the primary analysis routine, with it-
erations between it and the tank sizing, propellant weight, pressure vessels,
and nose section subprograms to achieve a consistent, integrated design that
matches the ASRM thrust profile, figure 2. The performance (i.e.payload capa-
bility), cost, and reliability of the design is evaluated by their respective
subprograms. The optimization capability of the original program was retained
and used on the one best configuration selected from the initial eight con-
figurations. A sumrary of the optimization technique is described in a follow-

ing section.

AERODYNAMIC MODEL

The aerodynamic subprogram uses a blend of simplified aerodynamic theory
and empirical relationships which result in acceptable agreement with wind tun-
nel test data. It generates a table of axial and normal aerodynamic force coef-
ficients as a function of Mach number (Mach 0.3 to 20) and angle of attack (-10
to 60 degrees) based on launch vehicle geometry determined by the weight subpro-
gram. The primary modification to the subprogram from the original version was
to account for the interference drag between the Shuttle external tank and the
hybrid boosters. I+ was at its maximum when the booster height was the same as
the external tank, and decreased as booster length increased.

WEIGHT MODEL

The weight suboprogram collects output from the other interactive subpro-
grams. It calls the appropriate subprograms to get component size, weights, lo-
cations, and center of gravity travel. Since variables in one subprogram influ-
ence calculated variables in other subprograms, the weight subprogram cycles

through all of the other subprograms until system and subsystem weights converge
to a constant value. pata files are created for use by the cost, reliability,

and flight performance subprograms.

LIOUID AND SOLID WEIGHT MODEL

The liquid and solid weight model determines the oxidizer and solid fuel
weight required to match the ASRM thrust versus time profile and specific im-
pulse (Isp) tables in response to the input values of mixture ratio, chamber
pressure, and nozzle expansion ratio. oxidizer tank ullage is assumed to be 2%
of the total volume. Reserve propellant is assumed to be 2% of the propellant

weight.



PRESSURE VESSEL MODETL

The pressure vessel model determines the pressurant tank volume, tank size
and shape, pressurant mass initially in the pressurant tank and pressurant mass
in the oxidizer tank at thrust termination. The model can use either pure he-
lium or Tridyne (a mixture of helium, hydrogen, and oxygen) as the pressurant.

TANK _AND INTERSTAGE MODEL

The tank and interstage model determines the tank wall thickness (including
gas generator case thickness), ellipsoidal ratio of the dome, and the tank
weight. Upper and lower dome thicknesses are determined from tank pressure and
hydrostatic head pressure developed due to a 3g maximum ascent acceleration.
The tank fabrication process with the IM7 carbon fiber composite material was
assumed to allow tapered wall thickness based on the pressure gradient from
upper to lower dome. The wall thicknesses are evaluated for local buckling and
stiffeners are added, or a slight increase in wall thickness made if required.
An aluminum liner is used inside the composite shell of the oxidizer tank and
Tridyne tank to prevent direct contact of the fluids with the composite mate-
rial. No insulation is used on the tanks. Other options evaluated, but not
used in the final configurations, were aluminum oxidizer tanks, steel gas gen-—
erator case, and inverted aft tank dome to shorten the tank length.

RELIABILITY MODEL

The reliability model computes the reliability of each subsystem and the reli-
ability of the overall system. Depending on the number of required components
and redundant componants used in the system, each delivered component reliabil-
ity is calculated and is available to be integrated into the subsystem reliabil-
ity and the overall system reliability.

FLIGHT PERFORMANCE

The flight performance subprogram performs a trajectory simulation of the
launch vehicle to main engine cutoff and analytically determines the OMS propel-
lant to achieve a 150 nmi circular orbit at 28 degree inclination. The orbiter
and external tank weight at lift-off was determined to be 1,840,600 pounds with
1,578,600 pounds of propellant and a delivered vacuum Isp of 452.4 seconds. No
fluids were assumed lost from the launch vehicle during ascent except propellant
delivered to the engines. The flight profile was a vertical ascent to a point
where a gravity turn would deliver the vehicle to a perigee altitude of 50 nmi.

The orbiter’s OMS engines are used to circularize the orbit.

COST MODEL

The life cycle cost (LCC) model was developed using experience from launch
vehicle and commercial aircraft programs. As in most parametric cost models,
weight is the primary input into the costing algorithms.

The cost algcorithms for the hybrid booster are comprised of several el-
ements as illustrated in figure 3. Within the categories of hardware, support,
facilities, ground support equipment, and launch operations, the cost associated
with each line item is estimated separately.

Design engineering cost is estimated component by component. The cost is
assumed to vary according to the equation:

Engineering Dollars = A*B*C*D*(wt)E



complexity factor
off-the-shelf factor
design maturity factor
cost coefficient

cost exponent

where:

A
B
C
D
E

Each component is assigned a design cost coefficient (D) and cost exponent
value (E) based on historical data for a design with average complexity, no
off-the-shelf characteristics, and a low design maturity. The complexity factor
(a) usually varies between 0.5 and 2.0 to adjust the cost for lower Or higher
design complexity. The off-the-shelf factor varies between 1.0 and 0.0 to ad-
just the cost for some percentage of off-the-shelf characteristics. The design
maturity factor usually varies between 1.0 and 0.0 to reflect the level of de-
sign maturity, such as obtained from component demonstrations (.80 factor) or
tests of engineering models (.45 factor).

The Manufacturing cost is estimated in a similar manner as the Design Engi-
neering cost. The cost equation is:

Manufacturing Dollars = A*B*C*D*(wt)E

where: A = complexity factor
B = material factor
¢ = learning curve cumulative factor
D = cost coefficient
E = cost exponent

Each component is assigned a manufacturing cost coefficient (D) and expo-
nent value (E) based on average manufacturing complexity, aluminum or steel ma-
terial, and one unit. The complexity factor (a) adjusts the cost for lower oOr
higher than average manufacturing complexity. The material factor accounts for
the relative cost of manufacturing and raw materials. For example, carbon com-
posite has a factor of 1.14. The learning curve cumulative factor accounts for
multiple quantities of a component and the jearning curve effect on cost as
shown in figure 4. After calculating the manufacturing dollars, a 5% addition
is made to account for the subsystem assembly effort. To account for final as-
sembly and checkout, this 5% subsystem cost is added to the manufacturing dol-
lars and the sum is multiplied by 15%. The support function costs are calcu-
lated based on the design and manufacturing costs as shown in figure 5.

The facilities cost is based on historical data as shown in figures 6-8.
The facilities initial spares cost is computed as the sum of 2% launch & control
center cost, 7% pad & site preparation cost, 2% vehicle assembly building cost.

The ground support equipment cost is pased on historical data as shown in
figures 9-12. The ground support equipment initial spares cost is computed as
the sum of 5% launch control GSE cost, 15% pad GSE cost, 7% integration, assem-
bly, checkout cost, and 50% mobile equipment GSE cost. The ground sector soft-
ware cost is computed pased on the number of lines of code for test and check-
out, and lines of coce for real time instrumentation, shown in figure 13.

The items comprising launch operations cost are a function of gross weight
and launch weight, except that oxidizer cost is simply the cost of oxidizer
loaded into the booster, shown in figure 13.

DESIGN STUDY
Figure 14 illustrates the four basic configurations. Each of the basic

configurations were evaluated with LOX and H202 oxidizer, making a total of
eight configurations. The overall vehicle diameter was set at 12 feet to be



close to the ASRM diameter, and the chamber pressure was assumed to be 1,000
psia. To match the ASRM thrust profile, the maximum operating pressure occurs
about 10 seconds into the burn and is approximately 1,100 psia. The nozzle area
ratio was set at 15. A mixture ratio was selected to produce the highest vacuum
Isp, and the ratio was held constant for the entire burn. A non-metalized fuel
formulation (ARCADENE 399C) with very little hydrogen chloride in the exhaust
was used. Fuel grain geometry was not optimized, but consideration was given to
avoid high port velocities which could cause erosive burning. IM7 graphite com-
posite structural material was used extensively. All configurations were ex-
pendable and used ablative nozzles and thrust chambers.

Weight allocatiors for thrust vector control, electronics, instrumentation,
aft skirt, connecting truss, and nose cone were based on values corresponding to
the current Space Shuttle Solid Rocket Booster. The gas generator configurations
used gas from the main gas generator to power the turbopunps. The classic hy-
brid configurations used methane purned with some oxidizer to power the
turbopumps and to gasify the oxidizer prior to injection into the fuel grain.

Tridyne, a mixture of helium, hydrogen, and oxygen, Wwas used for oxidizer
tank pressurization in the pressure fed configurations. It is flowed through a
catalytic bed to produce a hot mixture of helium and water vapor. Tank pres-
surization in the pump fed configurations was accomplished using helium stored
at ambient temperature to satisfy pump head requirements.

Incorporated into each design was a goal for high reliability. This goal
was apportioned to each major component using historical data. The oxidizer
feed system incorporated redundancy by using four turbopumps and a size which
would satisfy flow requirements with one failure. A 1.6 factor of safety was
used on structure to assure high reliability. The final reliability assessment
determined that system reliability was about the same for the gas generator and
classic hybrid concepts, 0.9985 and 0.9987, respectively.

The 1ife cycle cost (LCC) for each configuration was estimated using a con-
stant flight rate of one flight per month. As shown in figure 15, the lowest
LCC was provided by the pump fed gas generator hybrid with LOX oxidizer, and the
highest was provided by the classic hybrid with pressure fed H202. Figure 16
illustrates the comparison of LCC/payload weight ($/lb). This is the same trend
as the comparison of LCC in figure 15, but the H202 pressure fed gas generator
configuration, and both LOX and H202 pressure fed classic configuration have
much higher $/1b because of their lower payload capability.

Figure 17 illustrates the gross lift-off weight (GLOW) comparison of the
configurations. As shown, the configurations with LOX oxidizer are lower weight
than with H202, and pump fed configurations are lower weight than pressure fed.
The GLOW of the gas generator hybrid configurations are about the same as the
corresponding classic hybrid configurations.

The selected cenfiguration for further analysis was the pump fed gas gen-
erator hybrid with LOX oxidizer because it had the lowest LCC and the classic
hybrid presented higher development risk due to the scaling uncertainties as-
sociate with the complex interactions between the oxidizer and the solid fuel
grain. Figure 18 shows the detailed size and weight data computed by the hybrid
design program for tre selected configuration.

OPTIMIZATION STUDY

OPTIMIZATION TECHNIQUE

The optimization technique was presented in a previous JANNAF paper (Ref.
3). In summary, the ARES (Airframe Responsive Engine Selection) optimization



methodology is illustrated in Figure 19. In this four step process, a Design
Selector determines specific designs to be analyzed. The number of designs de-
pends on the number of independent variables (sometimes called design vari-
ables) . Figure 20 shows the savings in analysis time with the ARES technique
compared to a ntraditional® carpet plot optimization technique. As shown for
six independent variables, for example, 49 designs must be synthesized and
evaluated when using the ARES method, while over 4,000 would be required to per-
form the same level of analysis with a traditional approach. The time savings
i{s substantial when one considers that approximately 30 minutes is required to
completely synthesize one design with the design program. The number of levels
required, seven in this example, indicates that the 49 designs are comprised of
designs using seven intermediate values of the independent variables determined
by the method of orthogonal Latin squares. The number of ARES cases is always
the square of the number of levels.

The second step, as shown in figure 19, is to evaluate the designs with the
hybrid booster design computer program. The objective is to determine values of
dependent variables (sometimes called performance variables) for each design.

ITn the third step, a data regression is performed to fit quadratic curves
to the data. The analysis includes only those terms in the equation which are
mathematically determined to be significant. Each dependent variable has its
own equation in terms of the independent variables.

In the fourth and final step, optimizations are performed on the quadratic
curves. The program uses the method of steepest descent. optimizations can be
performed in different ways by constraining dependent variables and fixing se-
jected independent variables. For this study, only unconstrained optimizations
were performed. Since the quadratic curves approximate the dependent variables,
part of the fourth step is to input the optimum independent variable value into
the booster sizing and trajectory performance computer progran to determine the

dependent variable values for greater accuracy.

Figure 21 illustrates the four independent variables used in this optimiza-

tion analysis. As indicated in figure 20, 25 designs must be evaluated with 5
different levels of independent values. As shown on the left of figure 21, each
variable was assigned minimum and maximum values for the study. The 5 levels

for nozzle expansion ratio, for example, were 7.0, 11.5, 16.0, 20.5, and 25.0.
similarly, the other variables are divided into 5 levels, and the Design Selec-
tor uses the method of orthogonal Latin squares to determine the 25 designs,
represented by different combinations of independent variables, that must be
evaluated. The hybrid booster design program was used to determine the depen-
dent variable values, shown at the right of figure 21, for each of the 25 de-
signs.

OPTIMIZATION RESULTS

Ve Al A S e

Five different optimizations were performed and compared to the baseline
design. These optimizations were:

1) Minimum life cycle cost/lbm payload
2) Maximum payload weight

3) Minimum life cycle cost

4) Minimum empty weight

5) Minimum gross lift-off weight

Figure 22 illustrates the optimum values of the four independent variables
for each of these optimizations. As shown, for maximum payload weight, the di-
ameter should be as low as possible. The horizontal crosshatched bar indicates
the limit of the variable for the study. Although the optimizations can be ex-



trapolated outside the range of the regression data base, the 1limits were
retained for best accuracy and to prevent designs that would be unrealistic to
manufacture. Minimum LCC had the greatest diameter. Mixture ratio was close to
the baseline value for minimum $/1b and maximum payload weight, but it was at
its maximum 1limit for minimum LCC and GLOW. It was slightly 1less than the
baseline value for minimum empty weight. Chamber pressure Wwas approximately
1800 psia for most optimizations, but it was at its lower limit for minimum
empty weight, and close to the baseline value for minimum GLOW. Optimum nozzle
expansion ratio followed the chamber pressure trend except that it was at its
maximum value for minimum GLOW.

Figure 23 illustrates the optimum dependent variable values. Life cycle
cost was close to the baseline value except that some reduction was obtained for
the design that was optimized for minimum LCC. Surprisingly, the LCC for the

minimum empty weight was significantly greater than the other designs. The pay-
load capability was slightly greater than the baseline for most designs, except

that it was less for the minimum empty weight and minimum GLOW designs. The

$/1lbm payload was lower than the baseline for the minimum $/1bm design, maximum
payload design, and rinimum LCC design. The results indicate that lower $/lbm
can be achieved though a design with lowest LCC rather than maximum payload, al-
though the design for true minimum $/1bm is significantly different (as shown by
figure 22). GLOW is approximately the same for the designs, except that the
minimum empty weight design actually had significantly higher GLOW. The booster
length follows the jnverse of the diameter relation with the longer boosters

corresponding to the smaller diameters, and vice-versa.
CONCLUSIONS

The initial comparison of eight hybrid booster configurations, including
pump and pressure fed options, LOX and H202 oxidizer options, and gas generator
and classic hybrid concepts, showed that the pump fed, gas generator configura-
tion with LOX oxidizer had the lowest LCC and $/1bm payload. The gas generator
concept is also attractive because of its lower development risk.

Through the use of advanced structural materials and an optimized design,
over 40% increase in payload capability can be achieved compared to that pro-
vided by the ASRM. “he design optimization study showed that the lowest $/1lbm
payload is achieved with a higher chamber pressure than used in the baseline ve-
hicle (1800 versus 1000 psia). The minimum empty weight design had the highest
1cCc and GLOW, indicating that studies that simply minimize empty weight in lieu
of performing a LCC analysis could be in error.

The results of this analysis indicate substantial increase in payload capa-
bility, reliability, safety at relatively low cost can be achieved with hybrid
propulsion. Supporting test demonstrations are required to validate the perfor-
mance assumptions.
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HYBRID CONCEPT LCC COMPARISON

LCC (BILLIONS)
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Figure 2.3-82 Hybrid Confiqurations Life Cycle Costs




HYBRID CONCEPT COMPARISON, LCC/PAYLOAD

LCC/PAYLOAD ($/LB)
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Figure 2-=5+3- Hybrid Concept Comparison, 1,cC/Pavload
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Figure 2: Design Selector Case Definition Relationship
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